Support vector machines for novel class detection in Bioinformatics.

نویسندگان

  • Eduardo J Spinosa
  • André C P L F de Carvalho
چکیده

Novelty detection techniques might be a promising way of dealing with high-dimensional classification problems in Bioinformatics. We present preliminary results of the use of a one-class support vector machine approach to detect novel classes in two Bioinformatics databases. The results are compatible with theory and inspire further investigation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mining Biological Repetitive Sequences Using Support Vector Machines and Fuzzy SVM

Structural repetitive subsequences are most important portion of biological sequences, which play crucial roles on corresponding sequence’s fold and functionality. Biggest class of the repetitive subsequences is “Transposable Elements” which has its own sub-classes upon contexts’ structures. Many researches have been performed to criticality determine the structure and function of repetitiv...

متن کامل

Fault diagnosis in a distillation column using a support vector machine based classifier

Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...

متن کامل

A Novel Algorithm for Accurate Diagnosis of Hepatitis B and Its Severity

Background and Objectives: Accurate detection of type and severity of Hepatitis is crucial for effective treatment of the disease. While several computational algorithms for detection of Hepatitis have been proposed to date, their limited performance leaves room for further improvement. This paper proposes a novel computational method for the diagnosis of Hepatitis B using pattern detection tec...

متن کامل

A Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels

The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...

متن کامل

Addressing Scalability Issues of Named Entity Recognition Using Multi-Class Support Vector Machines

This paper explores the scalability issues associated with solving the Named Entity Recognition (NER) problem using Support Vector Machines (SVM) and high-dimensional features. The performance results of a set of experiments conducted using binary and multi-class SVM with increasing training data sizes are examined. The NER domain chosen for these experiments is the biomedical publications doma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics and molecular research : GMR

دوره 4 3  شماره 

صفحات  -

تاریخ انتشار 2005